久色porn_可以看毛片的网址_chinese乱子伦xxxx国语对白_久久亚洲精选_国产午夜亚洲精品午夜鲁丝片_97se亚洲综合在线韩国专区福利

眾推推 - 最專業的微信任務系統源碼!

資訊熱點
海文國際告訴你,學大數據能干什么

發布時間:2019-9-18 分類: 電商動態

大數據、數據科學、人工智能......這些詞近年來委火,天天聽到這些詞兒,處處看到這些字兒,無論是企業還是個人,似乎不跟這些詞搭上點關系,自己就被這個時代淘汰了一樣。海文國際作為全球知名的IT教育機構,我們開設大數據課程,上門咨詢大數據課程的人天天絡繹不絕,總會碰到一些學員問到:我很想學大數據,但我不知道學習了大數據后能干嗎?如果您也有同樣的疑問,不防花幾分鐘時間,讀完此文詳細了解學習大數據,你未來能干什么? 首先想詳細解釋下兩個詞兒:數據科學與大數據 數據科學(Data Science)這一概念自大數據崛起也隨之成為數據領域的討論熱點,從2015年開始,“數據科學家“便成為了一個工作職位出現在各種招聘信息上。那么究竟什么是數據科學?大數據和數據科學又是什么關系?大數據在數據科學中起到怎樣的作用?本文主要是想起到科普作用,使即將或正在從事數據工作的朋友對數據科學工作有一個全概貌了解,也使有想法進入大數據領域的朋友在真正從事大數據工作之前對行業的情況有所知曉。數據科學是一個混合交叉學科(如下圖所示),要完整的成為一個數據科學家,就需要具備較好的數學和計算機知識,以及某一個專業領域的知識。所做的工作都是圍繞數據打轉轉,在數據量爆發之后,大數據被看做是數據科學中的一個分支。 大數據(Big Data)其實已經興起好些年了,只是隨著無處不在的傳感器、無處不在的數據埋點,獲取數據變得越來越容易、量越來越大、內容越來越多樣化,于是原來傳統的數據領域不得不思考重新換一個平臺可以處理和使用逐漸龐大數據量的新平臺。用以下兩點進一步闡述: “吳軍博士提出的一個觀點:現有產業+新技術=新產業,大數據也符合這個原則,只是催生出來的不僅僅是一個新產業,而是一個完整的產業鏈:原有的數據領域+新的大數據技術=大數據產業鏈;數據使用的范圍,原來的數據應用主要是從現有數據中的數據進行采樣,再做數據挖掘和分析,發掘出數據中的潛在規則用以預測或決策,然而采樣始終會舍棄一部分數據,即會丟失一部分潛在規則和價值,隨著數據量和內容的不斷累積,企業越來越重視在數據應用時可以使用全量數據,可以盡可能的覆蓋所有潛在規則從而發掘出可能想到或從未想到的價值。 “在我從事大數據相關工作和學習的10年時間里,我一直認為大數據是一個以數據流向為主的鏈條或管道,數據從何而來,又去往哪里,不僅是哲學上的一個問題,也可以在做數據工作的時候考慮這個問題。如下圖所示,大數據領域可以分為以下幾個主要方向,而這幾個方向又可以分別對應一些工作職位: 1數據平臺 Data Platform,構建、維護穩定、安全的大數據平臺,按需設計大數據架構,調研選型大數據技術產品、方案,實施部署上線。對于大數據領域涉及到的大多數技術都要有所了解,并精通某一部分,具備分布式系統的知識背景; 對應職位:大數據架構師,數據平臺工程師 2數據采集 Data Collecting,從Web/Sensor/RDBMS等渠道獲取數據,為大數據平臺提供數據來源,如Apache Nutch是開源的分布式數據采集組件,大家熟知的Python爬蟲框架ScraPy等。 對應職位:爬蟲工程師,數據采集工程師 3數據倉庫 Data Warehouse,有點類似于傳統的數據倉庫工作內容:設計數所倉庫層級結構、ETL、進行數據建模,但基于的平臺不一樣,在大數據時代,數據倉庫大多基于大數據技術實現,例如Hive就是基于Hadoop的數據倉庫。 對應職位:ETL工程師,數據倉庫工程師 4數據處理 Data Processing,完成某些特定需求中的處理或數據清洗,在小團隊中是結合在數據倉庫中一起做的,以前做ETL或許是利用工具直接配置處理一些過濾項,寫代碼部分會比較少,如今在大數據平臺上做數據處理可以利用更多的代碼方式做更多樣化的處理,所需技術有Hive、Hadoop、Spark等。隨便說下,千萬不要小看數據處理,后續的數據分析、數據挖掘等工作都是基于數據處理的質量,可以說數據處理在整個流程中有特別重要的位置。 對應職位:Hadoop工程師,Spark工程師 5數據分析 Data Analysis,基于統計分析方法做數據分析:例如回歸分析、方差分析等;大數據分析例如Ad-Hoc交互式分析,SQL on Hadoop的技術有:Hive、Impala、Presto、Spark SQL,支持OLAP的技術有:Kylin; 對應職位:數據分析師 6數據挖掘 Data Mining,是一個比較寬泛的概念,可以直接理解為從大量數據中發現有用的信息。大數據中的數據挖掘,主要是設計并在大數據平臺上實現數據挖掘算法:分類算法、聚類算法、關聯分析等。 對應職位:數據挖掘工程師 7機器學習 Machine Learning,與數據挖掘經常一起討論,甚至被認為是同一事物。機器學習是一個計算機與統計學交叉的學科,基本目標是學習一個x-“y的函數(映射),來做分類或者回歸的工作。之所以經常和數據挖掘合在一起講是因為現在好多數據挖掘的工作是通過機器學習提供的算法工具實現的,例如個性化推薦,是通過機器學習的一些算法分析平臺上的各種購買,瀏覽和收藏日志,得到一個推薦模型,來預測你喜歡的商品。 對應職位:算法工程師,研究員 8深度學習 Deep Learning,是機器學習里面的一個topic(非常火的Topic),從深度學習的內容來看其本身是神經網絡算法的衍生,在圖像、語音、自然語言等分類和識別上取得了非常好的效果,大部分的工作是在調參。不知道大家有否發現現在的Google翻譯比以前的要準確很多,因為Google在去年底將其Google翻譯的核心從原來基于統計的方法換成了基于神經網絡的方法; 對應職位:算法工程師,研究員 9數據可視化 Data Visualization,將分析、挖掘后的高價值數據用比較優美、靈活的方式展現在老板、客戶、用戶面前,更多的是一些前端的東西,也可能要求有一定的美學知識。結合使用者的喜好,以最恰當的方式呈現數據價值; 對應職位:數據工程師,BI工程師 10數據應用 Data Application,從以上的每個部分可以衍生出的應用,例如廣告精準投放、個性化推薦、用戶畫像等。 對應職位:數據工程師 我建議想進入大數據領域的朋友可以選一個與自己現有技術背景相匹配的方向作為入門,如海文國際的大數據課程,這個課程適合之前做SA、DBA、JAVA開發的有一定IT基礎的人,同時也適合那有志于入進大數據領域的零基礎的的人員,從知識的廣度,讓學員建立一套有章可循、有據可依然的大數據思維;然后學員再將學習的魔爪延伸到其他感興趣的方向,這是最快進入這個領域的一個方法。當然,我們要知道上面所列的每一個方向都需要耗費大量的時間、腦力、體力,都是這個智能時代繼續發展的過程中不可或缺的一部分,海文國際大數據課程或許是最能幫助你的。

« 香港將迎來首家獨角獸公司 曾獲蔡文勝投資 | 支招:如何在網絡互助平臺眾托幫早起打卡中拿到紅包 »

主站蜘蛛池模板: 神马久久精品 | 自拍偷拍一区 | 黄色小视频在线免费观看 | 精精国产xxxx视频在线播放 | 日韩在线高清 | 日本特黄a级高清免费大片 国产小视频在线 | 国产一区精品在线 | 久久久精品 | 国产小视频在线 | 欧美专区日韩专区 | 欧美日韩成人精品 | 97精品久久久午夜一区二区三区 | 欧美综合在线观看 | 亚洲精品久久久久久一区二区 | 一级片久久 | jjzz日本| 在线免费小视频 | 精品久久网 | 成人黄色免费 | 草久草久 | 亚洲精品一 | 欧美xxxx18 | 一级做a爱片性色毛片www | 亚洲视频色 | 日韩视频一区二区 | 久久国产欧美一区二区三区精品 | 亚洲欧美日韩中文在线 | 亚av在线 | 成人97精品毛片免费看 | 国产成人精品亚洲777人妖 | 91在线精品一区二区 | 久久久久久国产免费 | 日韩欧美视频一区 | 国产精品久久久久久一区二区 | 国产精品视频大全 | 伊人av在线| 狠狠干综合| 欧美国产在线视频 | 欧美精品一区二区三区蜜桃视频 | 国产精品久久久久一区二区 | 欧美一级在线视频 |